Improved marketing decision making in a customer churn prediction context using generalized additive models

نویسندگان

  • Kristof Coussement
  • Dries F. Benoit
  • Dirk Van den Poel
چکیده

Nowadays, companies are investing in a well-considered CRM strategy. One of the cornerstones in CRM is customer churn prediction, where one tries to predict whether or not a customer will leave the company. This study focuses on how to better support marketing decision makers in identifying risky customers by using Generalized Additive Models (GAM). Compared to Logistic Regression, GAM relaxes the linearity constraint which allows for complex non-linear fits to the data. The contributions to the literature are three-fold: (i) it is shown that GAM is able to improve marketing decision making by better identifying risky customers; (ii) it is shown that GAM increases the interpretability of the churn model by visualizing the non-linear relationships with customer churn identifying a quasi-exponential, a U, an inverted U or a complex trend and (iii) marketing managers are able to significantly increase business value by applying GAM in this churn prediction context. 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Genetic Algorithm Based Method for Building Accurate and Comprehensible Churn Prediction Models

Customer churn has become a critical problem for all companies in particular for those that are operating in service-based industries such as telecommunication industry. Data mining techniques have been used for constructing churn prediction models. Past research in churn prediction context have mainly focused on the accuracy aspect of the constructed churn models. However, in addition to the a...

متن کامل

CRM at a pay-TV company: Using analytical models to reduce customer attrition by targeted marketing for subscription services

The early detection of potential churners enables companies to target these customers using specific retention actions, and subsequently increase profits. This analytical CRM (Customer Relationship Management) approach is illustrated using real-life data of a European pay-TV company. Their very high churn rate has had a devastating effect on their customer base. This paper first develops differ...

متن کامل

Variable selection by association rules for customer churn prediction of multimedia on demand

Multimedia on demand (MOD) is an interactive system that provides a number of value-added services in addition to traditional TV services, such as video on demand and interactive online learning. This opens a new marketing and managerial problem for the telecommunication industry to retain valuable MOD customers. Data mining techniques have been widely applied to develop customer churn predicti...

متن کامل

An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction

Several studies have demonstrated the superior performance of ensemble classification algorithms, whereby multiple member classifiers are combined into one aggregated and powerful classification model, over single models. In this paper, two rotation-based ensemble classifiers are proposed as modeling techniques for customer churn prediction. In Rotation Forests, feature extraction is applied to...

متن کامل

Maximize What Matters: Predicting Customer Churn With Decision-Centric Ensemble Selection

Churn modeling is important to sustain profitable customer relationships in saturated consumer markets. A churn model predicts the likelihood of customer defection. This is important to target retention offers to the right customers and to use marketing resources efficiently. The prevailing approach toward churn model development, supervised learning, suffers an important limitation: it does no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010